Coagulation of Natural Organic Matters Using Aluminum Tridecamer (Al$_{13}$) with Counter Ions

Ya-Fan Lin, Duu-Jong Lee*
Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan

ABSTRACT
Coagulation of natural organic matters (NOM) using coagulants is an efficient drinking water treatment process. Polyaluminum chloride (PACl) is a commonly adopted coagulant with aluminum tridecamer ([AlO$_4$Al$_{12}$(OH)$_{24}$(H$_2$O)$_{12}$Cl$_7$, Al$_{13}$] as an important hydrolysed intermediate. This paper investigated the effects of anions on coagulation of NOM with purified Al$_{13}$ with sodium salts as counter ions.

Keywords: Al$_{13}$; humic acids; anions; stability; coagulation

1. INTRODUCTION
Polymer aluminum chloride (PACl) is one of the frequently used coagulants in water treatment for organics and colloids removal (Lin et al., 2008, 2009; Shafran et al., 2005; Yan et al., 2007; Zhao et al., 2008). Hydrolysis and condensation of aluminum ions in acidic solution can yield numerous polynuclear species, including Keggin ions such as [AlO$_4$Al$_{12}$(OH)$_{24}$(H$_2$O)$_{12}$]$^{7+}$ (Al$_{13}$) (Akitt et al., 1985) or [Al$_{30}$O$_9$(OH)$_{36}$(H$_2$O)$_{28}$]$^{18+}$ (Al$_{30}$) (Chen et al., 2006; Roswell and Nazar, 2000). The Al$_{13}$ aggregates are of size of approximately 400 nm so are named nano-Al$_{13}$ (Gao et al., 2009). Although being intensively studied (Sarpola et al., 2004), the coagulant species, nano-Al$_{13}$, were mostly applied in pure coagulant process with no impurities. However, salts and natural organic matters (NOM) are present in all raw waters. Natural organic matters (NOM) are ubiquitously present in surface waters (Matilainen et al., 2010).

Salts containing high-purity Al$_{13}$ were produced (Gao et al., 2009; Liu et al., 1999; Shi et al., 2007; Wang et al., 2004; Xu et al., 2003; Zhao et al., 2002). Sulfate left in the produced Al$_{13}$ salt by conventional SO$_4^{2-}$/Ba$^{2+}$ separation method may deteriorate stability of Al$_{13}$ cluster in water (Wang et al., 2002). Lin and Lee (2010a) purified Al$_{13}$ clusters by solvent precipitation technique to achieve higher stability of Al$_{13}$ clusters than those purified using the SO$_4^{2-}$/Ba$^{2+}$ method. Lin and Lee (2010a) demonstrated a series of electrospray ionization mass spectrometry (EIS) results of Al$_{13}$ in the 50:50 water/acetonitrile solutions. These authors noted that acetonitrile is prone to adduct to the aluminum center and alter aluminum tridecamer to shorter polymer species. In the presence of the acetonitrile, the chloride ions could not coordinate with the aluminum center. However, Lin and Lee (2010b) demonstrated that the presence of chloride ions in water can lead to destabilization of Al$_{13}$ aggregates, suggesting the limited coordination capacity of chloride ions with the chloride ions. Lin and Lee (2011) demonstrated the EIS series of Al$_{13}$ in water/
methanol solutions and revealed that methanol molecules were medium ligands to Al$_{13}$ cluster. These results clearly demonstrated that anions can affect the stability of nano-Al$_{13}$, with effects following acetonitrile > methanol > chloride.

Coagulation-sedimentation is a cost-effective process to eliminate NOM from waters (Bratby, 2006). This study characterized the Al$_{13}$ contents in self-synthesized product and demonstrated the possible inhibition effects of counter ions on coagulation efficiency of studied Al coagulants on humic acids removal from water.

2. MATERIALS AND METHODS

2.1 Chemicals and materials

A laboratory synthesized Al$_{13}$ was prepared by solvent precipitation method from AlCl$_3$·6H$_2$O and purified as previously noted (Lin and Lee, 2010a). A fixed quantity of AlCl$_3$·6H$_2$O salt (4.65 g) was dissolved in 20 ml deionized water at 353 K; aqueous NaOH (1.8 g in 20 ml deionized water) was then added drop wisely with vigorous mixing until $[OH^-]/[Al] = 2.42$. The yielded solution was turbid, but became clear after further mixing for 2 h at 353 K. Vacuum condensation at 333 K by a rotary evaporator (BÜCHI Rotavapor R-200, BÜCHI Labortechnik AG, Switzerland) was applied to the suspension to remove water until the final suspension volume was 5 ml. Then 10 ml of n-propanol was added into the suspension with mixing at room temperature for 10 min. Following this step 50 ml of acetone was added with mixing. Salt precipitated from the solution was filtered through a glass filter (Por. 4, nominal maximum pore size, 10-16 µm; Robu Glasfilter GeraLte GmbH, Hattern, Germany) and was rinsed using tetrahydrofuran (THF) to produce an off-white powder with an 85% yield.

Humic acid standard (Sigma-Aldrich, H16752, MO, USA) was firstly dissolved in 1 N NaOH and added deionized water as stock solution 1,000 ppm. Then, pH of the solution was adjusted to 6.36 by 0.1 N HCl and filtered through 0.45 µm filters. The solution was then diluted to 75 mg/L concentration prior testing.

All the other chemicals (NaOH, NaCl, NaBr, NaI, Na$_2$SO$_4$, Na$_2$CO$_3$, Na$_2$C$_2$O$_4$, NaClO$_4$, NaBPh$_4$, NaSCN, NaPBz, NaPhSO$_3$, NaPAc, NaBF$_4$, NaC$_{12}$H$_{25}$SO$_4$ (sodium dodecyl sulfate, SDS) and polyaluminum chloride (PACl) in 5.4% w/w Al$_{3+}$) were purchased from Merck Taiwan Ltd. at the highest purities available.

2.2 Titration tests

Purified Al$_{13}$ salt was dissolved in deionized water to generate 0.0128 M of Al solution. 50 ml of the Al$_{13}$-NaCl solution (pH 4.78, turbidity 15 by a nephelometric turbidity unit (NTU)) was poured into a conical flask on an autotitrator and stirred vigorously. A 0.4 M NaOH aqueous solution was added to the flask at flow rate of 1 ml/min until solution pH reached 13.

2.3 Coagulation tests

Humic acids solutions were diluted from stock solution with DI water to 152 mg/L at pH 6.9. In tests with counter-ions, prescribed amount of sodium salts were mixed at 0.17 mM equivalent ($e^+[ion]/[Al^{3+}]=3.35$) with the humic acid solution. The yielded humic acid solution was dosed with PACl or Al$_{13}$ solutions at 53 mg/L in Al$_{3+}$ with vigorous mixing (2 min) and then slow mixing (28 min). The supernatant was withdrawn from 2 cm from water surface after 30-min sedimentation. The UV spectra of each sample were scanned at the intensities of 220, 254, 280, 290, 300, 350, 400 and 450 nm recorded and averaged for humic acid content determination.
2.4 Analytical analysis

The synthesized Al\textsubscript{13} powders, which were characterized by the IR spectra were determined using a Varian 640-IR spectrophotometer (FT-IR) (Varian NMR, Inc., Palo Alto, CA, USA) using KBr pellets dispersed with sample powders in the 4000-400 cm-1 range. The 27Al NMR spectra were acquired by a Varian Unity Inova 500 spectrometer (Varian NMR, Inc., Palo Alto, CA, USA) at a resonating frequency of 130 MHz. The 27Al NMR spectra were referenced to AlCl\textsubscript{3}·6H\textsubscript{2}O (0.5 M) at pH 2 (0 ppm). The D\textsubscript{2}O solution of purified Al\textsubscript{13} was poured into a 5-mm NMR tube. The 27Al solid-state magic angle spinning (MAS) NMR spectra were acquired with a Bruker DSX 400 spectrometer. The purified Al\textsubscript{13} powder (42.8 mg) was then dissolved in 0.2 ml D\textsubscript{2}O solution (0.17 M) for 27Al-NMR measurement. The number of scans was 1024. The purity of sample was characterized as peak ratio for Al\textsubscript{13} and Al monomers. This purity does not count for other species such as Al\textsubscript{30} or colloids formed after aging. The purified Al\textsubscript{13} solution was prepared using analytical grade reagents and deionized water. The aluminum solution ([Al\textsubscript{13}]7+) concentration was adjusted to 67 mM, and final pH was 4.78.

3. RESULTS AND DISCUSSION

3.1 Produced Al\textsubscript{13} salt

The SEM image of the produced Al\textsubscript{13} salt is shown in Figure 1a. The sediment of Al\textsubscript{13} salt is shown in Figure 2. The 27Al NMR spectra had two resonance peaks - a narrow peak at 62.5 ppm corresponding to the tetrahedral core of the Al\textsubscript{13} polycation, and the 0 ppm peak for octahedrally coordinated monomeric Al species (Figure 1b). The relatively broad 0 ppm peak in 27Al NMR spectra was probably attributable to rapid quadrupolar relaxation of the unsymmetrical nucleus of aluminum hydroxide. The ratio between Td-Al and monomeric Al signal intensities indicates that the purified salt contained > 95% Al\textsubscript{13} (top of Figure 1b). The IR spectrum for the purified Al\textsubscript{13} cluster (spectrum not shown) clearly reveals the representative bands at 999 cm-1 for the Al-OH-Al bond; the band at 723 cm-1 for Keggin-Al\textsubscript{IV}O\textsubscript{2}OH; and 636 cm-1 for Al-OH. Hence, the present purified product had high purity of Al\textsubscript{13}.

The NMR spectrum of PACl tested in the present work had a weak 62.5 ppm peak and a relatively strong 0 ppm peak. The purity of Al\textsubscript{13} in the PACl salt was estimated less than 25% (middle of Figure 1b).

3.2 Stability

Initial pH of the Al\textsubscript{13} solution was roughly 4.74 (Figure 3a). The pH increased with B value owing to polymerization of Al oligomers and neutralization of free H+ in the solution (Fournier et al., 2008). At B = 5.2 – 5.8, the added OH- primarily deprotonated the external water ligands on Al\textsubscript{13} clusters. At B = 5.8, pH reached 8.2 and the titration reached equivalent point with deprotonation reaction to reduce the surface charge of Al\textsubscript{13} clusters, resulting in their aggregation. The turbidities of the titration solution are an indicator for cluster stability. The particle distribution at B = 5.8 indicated that the mean particle size was 56.4 µm (Figure 3b). Over 5.8 < B < 6.4, the added OH- deprotonated the water ligands of formed Al\textsubscript{13} aggregates and polymerized deprotonated aggregates into sol-gels (Wang et al., 2002). Particle size distribution at B = 6.4 had mean particle size of 1150 µm (Figure 3c). When pH was > 10, the formed sol-gels were dissolved into Al(OH)\textsubscript{4}- (Archer et al., 2005). These
Figure 1 (a) SEM image of the purified Al_{13} salt; (b) Solid-state 27Al NMR of aluminum salts. Top-down: Purified Al_{13} salt; PACl salt; purified $\text{Al}_{13} + \text{NaBF}_4$ salt, respectively. Peaks at 62.5 ppm correspond to tetrahedral core, and 0 ppm to octahedrally coordinated monomeric Al species.
Figure 2 Appearances of collected sediments. (a) Al$_{13}$ salt; (b) Al$_{13}$-humic acid sediments

Figure 3 (a) (to be continued)
experimental observations agree with those reported by Lin and Lee (2011) with purified Al$_{13}$ without residual chloride. When chloride ions were presented in the solution, the B value triggering precipitation would be much lower, indicating the destabilizing role of chloride on Al$_{13}$ clusters.

Some titrated samples at pH 8 were back-titrated using HCl to pH 4. Clear solution was formed, indicating de-aggregation of the Al$_{13}$ cluster. The so-yielded solid has identical IR spectra as Al$_{13}$ monomer. Hence, the aggregation of Al$_{13}$ cluster is a reversible process depending on solution pH.

Titration with Na$_2$SO$_4$ showed that the Al$_{13}$ solution was destabilized at [SO$_4^{2-}$]/[Al$_{13}^{13+}$] > 0.65 (Figure 4). In this test the pH ranged between 4.74 and 4.78, thus were not shown in the figure. Sulfate was presented in excess in purified Al$_{13}$ salt by conventional SO$_4^{2-}$/Ba$^{2+}$ method. This observation clearly demonstrated that the residual sulfate ions can induce structural deterioration of Al$_{13}$ clusters.

Sodium salts (NaOH, NaCl, NaBr, NaI, Na$_2$SO$_4$, Na$_2$CO$_3$, Na$_2$C$_2$O$_4$, NaClO$_4$, NaBPh$_4$, NaSCN, NaPBz, NaPhSO$_3$, NaPAc, NaBF$_4$, NaC$_{12}$H$_{25}$SO$_4$ and PACl) of 0.17 mM equivalent were added to the Al$_{13}$ salt to confirm their role on cluster stability. The NMR spectrum of Al$_{13}$-NaBF$_4$ solids is shown in Figure 1b. Clearly the addition of NaBF$_4$ completely destroyed the tetrahedral core of the Al$_{13}$ polycation.

3.3 Coagulation tests

Fresh Al$_{13}$ solution was prepared and used immediately in coagulation test. The removal efficiency of using 53 mg/L Al$_{13}$ (in Al$^{3+}$) on 152 mg/L humic acid solution were high (100% in Figure 5a). The yielded sediment is shown in Figure 2. The presence of OAc$^-$ and BF$_4^-$ significantly inhibited coagulation capability of Al$_{13}$ on humic acids. The inhibition capability of dosed sodium salts on coagulation capability of Al$_{13}$ follows: BF$_4^-$ > OAc$^-$ > PhSO$_3^-$ > I$^-$ > SCN$^-$ > BPh$_4^-$ > Br$^-$ > OBz$^-$ > Cl$^-$ > ClO$_4^-$ ~ SO$_4^{2-}$.

The Al$_{13}$ solution was prepared and aged at room temperature for 48 h. The removal efficiency of using 53 mg/L Al$_{13}$ (in Al$^{3+}$) on 152 mg/L humic acid solution were still high (99.3% in Figure 5b). The presence of 0.17 mM sodium salts inhibited coagulation capability of Al$_{13}$ on humic acids. Adding NaCl, NaBr or NaI led to 11-21% reduction of coagulation efficiency. The presence of Na$_2$SO$_4$, NaOAc, EDTA and NaC$_2$O$_4$ would...
Figure 4 Titration curve of Al$_{13}$ solution containing 50 ml of 0.0128 M Al$_{13}$-NaCl solution at pH 4.78, 15 NTU by (a) 0.4 M NaOH (b) 0.25 M Na$_2$SO$_4^{2-}$. Flow rate: 1 mL/min

Figure 5 (a) (to be continued)
Figure 5 Removal efficiency of humic acids from waters: (a) Fresh Al\textsubscript{13} solution; and (b) 48-h aged Al\textsubscript{13} solution (152 mg/L humic acids at pH 6.9 dosed with 53 mg/L Al\textsubscript{13})

Figure 6 Removal efficiency of humic acids from waters (152 mg/L humic acids at pH 6.9 dosed with 53 mg/L PACl in Al3+)
inhibit > 50% of coagulation capability. The inhibition capability of dosed sodium salts on coagulation capability of Al\textsubscript{13} follows: C\textsubscript{2}O\textsubscript{4}2- > EDTA > OAc- > OBz- > SO\textsubscript{4}2- > SCN- > PhSO\textsubscript{3}- > I- ~ Cl- > Br-.

Tests with 53 mg/L PACl (in Al\textsubscript{3+}) on 152 mg/L humic acid solution were conducted as a reference (Figure 6). Inhibition effects on coagulation followed: CO\textsubscript{3}2- > citrate > malate > dodecylsulfonate > salicylate > BF\textsubscript{4}- > BPh\textsubscript{4}- > SO\textsubscript{4}2- ~ Cl- ~ ClO\textsubscript{4}- ~ OAc-. The trend of inhibition of sodium salts on PACl was close to that on fresh Al\textsubscript{13} rather than aged Al\textsubscript{13}.

Experimental results revealed that aging of Al\textsubscript{13} solution deteriorated coagulation capability of the Al\textsubscript{13} clusters. Aged Al\textsubscript{13} solutions in general had lower Al\textsubscript{13} contents (data not shown). The poorer coagulation performance of aged Al\textsubscript{13} solution as compared to fresh Al\textsubscript{13} solution suggested that the anion-Al\textsubscript{13} interaction is weaker than anion-Al(OH)\textsubscript{3} interaction. Comparatively, the PACl was much more stable in solution form during aging. When using Al\textsubscript{13} as coagulants, the possible aging effects in chemical preparation and operation should be taken into account.

Experimental results also revealed that the better the coordination capability of the anions, the higher the inhibition capability of the anions on Al\textsubscript{13}/PACl coagulation with humic acids. However, the inhibition effect of C\textsubscript{2}O\textsubscript{4}2- was greater than that of EDTA, indicating that the five-membered ring complex by N-atom on EDTA is not as stable as that by oxalate-Al. Distinct chemical properties of added salts led to very different coagulation behavior. The sizes and charge are close for ClO\textsubscript{4}- and BF\textsubscript{4}- ions, but their capability to inhibit coagulation with humic acids are very different. Likely the hydrolyzed products, fluoride ions, of tetrafluoroborate ions under acidic condition may bind to Al cluster to form stable AlF\textsubscript{6}3- leading to deterioration of the cluster structure. Acetate is generally considered as a weak ligand in water. However, its presence at [OAc]/[Al] > 3 could lead to deterioration of Al\textsubscript{13} cluster (Figure 1c). At [OAc]/[Al] = 1, aggregation of Al\textsubscript{13} was produced but the structure of Al\textsubscript{13} cluster remained intact (data not shown). Benzoate is regarded as a weaker ligand than acetate, which has minimal effects of Al\textsubscript{13} in PACl solution. However, benzonate has a significant effect on coagulation efficiency with humic acids. Benzensulfonate is commonly applied in water as a counter ion. Its inhibition on coagulation of Al\textsubscript{13} is not as high as benzonate. Hence, many chemical properties of anions affect the coagulation effects of Al\textsubscript{13} with humic acids. Coagulation behavior without considering effects of counter ions is not possibly predicted correctly from first principles.

CONCLUSIONS

This study synthesized and characterized Al\textsubscript{13} salts, giving a purified Al\textsubscript{13} product of purity > 95% w/w. The Al\textsubscript{13} salt could be reversibly transformed between dispersed and aggregates states at pH < 8.2. Fresh and aged Al\textsubscript{13} solutions had different coagulation behaviors. The inhibition capability of dosed sodium salts on coagulation capability of fresh Al\textsubscript{13} follows: BF\textsubscript{4}- > OAc- > PhSO\textsubscript{4}2- > I- > SCN- > BPh\textsubscript{4}- > Br- > OBz- > Cl- > ClO\textsubscript{4}- ~ SO\textsubscript{4}2-. The inhibition capability of dosed sodium salts on coagulation capability of aged Al\textsubscript{13} follows: C\textsubscript{2}O\textsubscript{4}2- > EDTA > OAc- > OBz- > SO\textsubscript{4}2- > SCN- > PhSO\textsubscript{3}- > I- ~ Cl- > Br-. PACl tests behaved closely with fresh Al\textsubscript{13} solution. To use Al\textsubscript{13} as coagulants, it is necessary to consider the possible aging effects and role of counter ions in chemical preparation and operation.
REFERENCES

