A

Journal of Water Sustainability, Volume 3, Issue 4, December 2013, 223-237 \,
—/

\|
)
!

© University of Technology Sydney & Xi'an Univergibf Architecture and Technology

Introductory of Microsoft Excel SOLVER Function - Spreadsheet
Method for Isotherm and Kinetics M odelling of M etals Biosor ption
in Water and Wastewater

Md Anwar Hossain, Huu Hao NgoNVenshan Guo
Centre for Technology in Water and Wastewater, 8cabCivil and Environmental Engineering, Univeysof
Technology Sydney, Broadway, NSW 2007, Australia

ABSTRACT
This paper aims to introduce a simple method toawomplicated non-linear analysis of isotherm &imetics
models for metals biosorption based on input fumgiof spreadsheets. A robust method is demorsthete to
exploit the ‘SOLVER’ function available in Microgo{MS) Excel spreadsheet. It is more economic aser u
friendly than specialized computer programmeshis $tudy, an iterative method was proposed toymedhe op-
timal goodness of fit between experimental data medlicted data. This was described the implemgntiethod
of a set of real data (garden grass as biosorb@utthe predicted results were compared with liseatysis and
MATLAB analysis. The R values found from MS Excel spreadsheet were 0.999 and 0.996 while being
0.997, 1.000 and 0.999 by MATLAB for copper, lead @admium adsorption, respectively onto gardeesggréhe
prediction of maximum adsorption,,dpy excel (59.336, 63.663 and 42.310 mg/g) werg senilar to MATLAB
(59.889, 63.509 and 41.560 mg/g). The predictidnkiretics parameters were also close to MATLAB lgsis.
Hence, the MS Excel Spreadsheet method could laadyttool for biosorption models.

Keywords. Solver function; Microsoft Excel spreadsheet; {iapar analysis; iteration; goodness of fit; MATBA

1. INTRODUCTION of the adsorption mechanism pathways,

) , ) expression of the surface properties and
To explore novel biosorbents in accessing 8, nacities of adsorbents, and effective design

idea}l biosorption system, it is gssentialllto' e$5t the adsorption systems (El-Khaiary, 2008:
tablish the most proper adsorption equ'“b“uml'hompson et al., 2001). Similarly, the kinetics
correlation and kinetic correlation (SrivaStqu)arameters generally adsorption time and

etal., 2006). Itis crucial for reliable predictio ,ern of metals onto biosorbents are known
of adsorption parameters and quantitativg,m he fitness of kinetic parameters.
comparison of adsorbent behavior for different

. " In the past, linear least-squares method was
adsorbent systems or experimental Condltlonms/idel used by transforming the equation into
(Gimbert et al., 2008; Ho et al., 2002). In the y used by t g 9

. N : i a conventional linear form to calculate or pre-
perspective, equilibrium relationships, gener-. . L
o . dict the isotherms/kinetics parameters or the

ally known as adsorption isotherms, describe . o
ost fitted models. Principally, the models are

how pollutants interact with the adsorbent”

materials, and thus are critical for optimizationsUbJeCteOI to their goodness of fit to the

experimental data witlthe magnitude of
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coefficients of determination that close to unityMicrosoft Office, and thus no additional cost is
(Wong et al., 2004). On the other hand, a sigequired. Spreadsheet programmes are among
nificant limitation related to the linearizedthe most commonly used software, and most
form of isotherm/kinetics equation has recentlyesearchers have experience with them. Excel
been pointed out, which produces a vadgiffers a friendly user interface, flexible data
amount of different outcomes, implicitly altermanipulation, built-in mathematical functions
the error structure, violates the error variancand instantaneous graphing of data. It contains
and normality assumptions of standard least function, named SOLVER, which is ideally
squares, leading to the bias of the adsorptisuited to fitting data with non-linear functions
data (Han et al., 2007; Ho, 2004; Hong et alyia an iterative algorithm (Bowen and Jerman,
2009; Tunali and Akar, 2006; Vasanth and.995), which minimizes the sum of the squared
Sivanesan, 2007). In this context, a non-lineaifference between experimental data and
form of the isotherm and kinetics models witlpredicted data. The objective of this present
error analyses and optimization techniques astudy was to propose and describe a method of
needed. In addition, evaluating the accuracyon-linear regression using the SOLVER
and consistency in parameters prediction dunction of Excel as well as to compare the
estimation are also demanding. Moreover, predicted parameters for Langmuir isotherm
curve fitting is applied to describe experi-and Pseudo-2nd-order models with the
mental data in all fields of research. The bette/ATLAB and linear analysis.

the fit, the more accurately the function de-

scribes the data. Over the past few decades, the

exponential development of computer pro2. METHODS

gramming has provided scope to calculate and

prediction of model parameters. The introduc! he methods illustrated in this paper are: (i) to
tion of computers into research makes ipredict the optimum values of parameters for
straightforward to fit data with simple isotherms and kinetics models, (ii) to find out
functions such a linear regression, but it ifigher fitness of models, and (iii) to predict the
more difficult and complicated to fit data with Curve fitted with experimental values with MS
non-linear functions. Most of the programs (e&xcel spreadsheet using Solver function. They
MATLAB, C**, Microcal Origin, Sigma Plot or Were carried out on PC operated by Windows
Graph pad Prism) require special mathematicgP07 and MS Office 2007. This protocol
knowledge to use and provides differeneXxplained entering the experimental data
options such as capability of fitting user-inpuff@nually into Excel and preparing graphs from
functions to data. In addition, these programdata. On this occasion, the formulated algo-
are expensive and significantly excess cost féithm is carried out and the predicted curve is
simply fitting the data with non-linear func- overlaid on the experimental data points. De-
tions. Additionally, these programmes canno8'€€ of fitness of predictions is also calculated
easily manipulate the data and tend to displaP that the accuracy of fit can be measured.
data, graphs, results, and analysis in multiple

windows, which can lead to confusion and-l Modélsand assumptions

figures are not useable for article publlcatlon.The Langmuir adsorption isotherm is perhaps

An alternative method is to use Microsoftthe pest known of all isotherms describing
Excel to fit non-linear functions. An advantageadsorption_ The Langmuir model is obtained
of this method is that Excel is probablyynder the ideal assumption of a totally
included in the computer package as part ¢fomogenous adsorption surface (Bilgili, 2006)
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and represented as follows (Langmuir, 1918):2.2 Goodness of fit

_ K. G (1) Goodness of fit is an essentially important pa-
1+K C, rameter that estimates how well the curve (i.e.
the prediction) pronounces the experimental
where G is the equilibrium concentration data. Generally least squares method is used to
(mgfl), ckis the amount of metal ion adsorbedneasure of the goodness of fit. It is based on
(mg/g), gn is the @ for a complete monolayer the theory that the scale of the difference be-
(mg/g), and K is the constant related to thetween the experimental data points and the
affinity of the binding sites and the energy obrediction curve is a good measure of how well
adsorption (I/mg). the curve fits the data. For the purposes the
The pseudo-second-order model proposddast squares fit method will be demonstrated
by Ho and McKay (1998) is based on thdy linear regression where ‘independent’ and
assumption that the adsorption follows secondependent’ variables are used.
order adsorption. The linear form can be |n the past, non-linear data would be

written as follows: changed into a linear form and consequently
analysed by the least squares fit method. This
(2) analysis could yield inaccurate measurements
and predictions of the data and may alter the
experimental error or alter the relationship
petween the ‘independent’ and ‘dependent’
variables. It is presumed that this method is
rate constant of adsorption. erroneous and old fashioned which should not

Th deli f th dels is lat dIbe operated. For data not describable by a
€ Modetiing ot the Models 15 Tormulateq; o oy function, it is crucial to apply a protocol

on the basis of some essentially important a?ﬁat will fit a non-linear function to the data. A

sumptions. The following are the assumpt'onséuitable method for this procedure is called

() The equilibrium concentration, Qmg/l) iterative nonlinear least squares fitting. This
for equilibrium isotherm and contact time, torocess will fulfill the same goal as used for
(min) is considered as an ‘independentinear regression, i.e. minimizing the value of
variable. the sum of squared of the difference between

(i) The amount of metal ion adsorbed{mg/gq) data and prediction. However, it is still differ-
and the adsorption amount at any time gnt from linear regression in a way that it is an

(min), g (mg/g) are assumed as ‘dependen{terative process based on algorithm. Initial
variables. parameters are estimates based on previous

experience of the data and on a sensible guess

(”I)c-;hzcitm am;nrrtlm; ) ;n: dnifzerrnu?dcsoonr;t;? based on knowledge of the function used to fit
pactty, & (mgig g the data. The following parameters are meas-

K. (I/mg) are presumed as predictable . o
variables based on the best fitted conditiohjreOI and judged the goodness of fit

of isotherm model. (i) The sum of squares (SS)

(iv) The adsorption amount at equilibriums qhe pest fit of the data is judged by the sum of
(mg/g) and_the rate constant of adsqrpt'oréquares (SS) and the smallest value for the
Kz (g/mgmin) are assumed as predictabley,y, of squares (SS) is the best fitted data of

variables based on the best fitted conditio[‘he model. This is described by the function:
of kinetics model.

Qe

e K0t
(1+ qek2t)

where ¢ (mg/g) and g (mg/g) are the
adsorption amount at equilibrium and time
(min) respectively and K(g/mg-min) is the
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n and ‘prediction data, (Gnodgel. The coefficient
SS= Z[qexp ‘qmode|] 2 (3)  of determination represents the percent of the

= experimental data that is the closest to the line
of best fit/prediction. The models fithess is
Signified by the coefficient of determination

corresponding € The first iteration calculates (R%) and the following expression is used to
the SS value based on the initial parametef€teérmine the R(Hossain et al., 2012b):

and the second iteration involves varying the
parameter values by a small amount and
recalculates the SS. This process is repeatedR* =1~
several times until a smallest possible value of

SS is achieved. Only a single iteration is "

required for linear regression to get the lowest \\here Qex is the equilibrium sorption

value 9f the SS, because the second and higij‘éipacity found from the batch experiment,
er derivatives of the function are zero. Conqe'model is the prediction from the isotherm

versely, the second and higher derivatives atgqdel for corresponding to.Gand n is the
not zero for non-linear regression, and thus ai\,;mber of observations.

iterative process is required to calculate the
optimal parameter values. (iii) Residual root mean square error (RMSE)

and the chi-square tesf)

where, @y is the experimental datam&eiS
the value predicted by the models for curve

_ 2
(q e.exp.n qe.model.n)

NgE

1l
iy

n

(4)

(qe.exp.n - qe.exp.n) ?

M=

1l
ik

Several algorithms wuse in non-linear
regression including the Gauss-Newton, thgion-linear error functions such as the residual
Marquardt-Levenberg, the Nelder-Mead angoot mean square error (RMSE) and the
the steepest descent methods (Johnson, 199i-square testyf) are used to judge the equi-
SOLVER, which is based on the robust anglbrium model with the optimal magnitude.
reliable generalized reduced gradient (GRGJhe standard equations are as follows (Hoss-
method can be used as an easy iteratiefin et al., 2012b):
protocol. A comprehensive explanation of the
evolutl_on_and operation of this code .can _be RMSE= \/ 1 Z(qe.exp.n_qe.model.lz (5)
found in literature (Lasdon et al., 1978; Smith
and Lasdon, 1992). All algorithms have
similar properties, require input initial param- 2 N (qe_exp_n—qe_mdel_n)2
eters and use these values to get a better esti- X = Z
mation of the parameters used in iterative
process. where, ‘G.exp IS the equilibrium adsorption
capacity found from the batch experiment,
‘Je.model IS the prediction from the isotherm
The coefficient of determination, R is model for corresponding to &and ‘n’ is the
practical as it gives the proportion of thenumber of observations. The small values of
variance of one variable that is predictabl®MSE andy” indicate the better model fitting
from the other variable. It is a measure thaand the similarity of model with the experi-
allows verifying how certain one can be inmental data respectively (Ho et al., 2002).
maklpg predictions f.rom‘ a gertaln model.%'l'h%v) The normalized standard deviation (NSD)
coefficient of determination is such that 0 _ R and average relative error (ARE)
< 1, and denotes the strength of the linear
association between ‘experimental datgsxfl The kinetics model is verified and optimised

=

(6)

n=1 qe.exp.n

(i) The coefficient of determination R
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by the coefficient of determination {R by
two non-linear errors: the normalized standard
deviation (NSD) and average relative error
(ARE). The standard equations are defined as
(Gu et al., 2006; Hossain et al., 2012b):

N
_ 2
Z (qt.exp.N qt.modeI.N)
N=1

227

and ‘equilibrium capacity at t; gmg/g)’in

B column for Pseudo-2nd-order kinetics
models. This is shown in Figure 1 for
isotherm model and Figure 2 for kinetics
models.

b) Plot the data from cells A2 to A17 as X

axis and cells B2 to B17 as Y axis in a
scatter plot. The data points are displayed
as filled squares.

c) Enter labels in cells G1 to G8 to depict the

R? =1- 1 : (7)
Z (Qt.exp.N - qt.exp.N )
N=1
2
N -
NSD - 100)( 1 Z qt.exp.N qt.modeI.N (8)
N-1 i=1 t.exp.N

ARE — 100i|:qt.exp.N - qt.modeI.Ni| (9)

N i=1 qt.exp.N

where, @exp and @model(MQY/Q) are experi-
mental (‘exp’) and model (‘model’) predicted
amount of adsorptions capacity at time ‘t’ and
‘N’ is the number of observations. The smaller
values of NSD and ARE imply the better
fitted model.

2.3 Algorithm and configuring the
spreadsheet for non-linear models

The following process illustrates how to use

the SOLVER function in Excel to fit data with )

user-input non-linear functions. The procedure
by which the data fit proceeds is called iterative
non-linear least squares regression. To execute
non-linear regression analysis using the
Langmuir isotherm and Pseudo-2nd-order
kinetics models, the following procedure must
be formulated prior to proceed:

contents of the next adjacent cells H. In
cell G1 enter g, which will describe the
maximum adsorption capacity in cell H1.
Similarly, for cells G2 to G8, KMean of
Exp. g, df (degree of freedom), S.E.
(standard error) of Exp.eqR?. Critical t
and CI (confidence interval), respectively.

d) For Kinetics model, Enter.an cell G1 and

K2 in cell G2 and rest of cell G (G3 to G8)
are same as point 3.

e) Enter Langmuir Isotherm equation (eq.1)

in column C (C2 to C17) which gives the
predicted values of equilibrium adsorption
capacity, gfor the corresponding equilib-
rium concentration, £ The Excel recog-
nized form of the equation is:

= ($HSL*SHS2*A2)/(1+ (SHS2*A2))

For kinetics equation (eq.2) enter the excel
form function in column C (C2 to C15)
which give the predicted values of equi-
librium adsorption capacity, ;gfor the
corresponding equilibrium time, t. The
Excel recognized form of the equation is:

= ($HP2*($H$1"2)*A2)/(L+$HSL*SHS2*A2)

g) The mean value of ¢gfor equilibrium

a) Enter experimental data onto a spreadsheet
in two columns, the A column containing
the ‘equilibrium concentration,&mg/l)’,
and the B column containing the
‘equilibrium capacity, g (mg/g)’ for
Langmuir isotherm; and ‘equilibrium
concentration at t, mg/l)’ in A column

isotherm and ¢for kinetics adsorption are
calculated from the data at column B. The
excel recognized form of the equation is
need to be entered in cell H3 and the form
is:

= AVERAGE (B2:B17)

h) Enter the df (degree of freedom) function
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in cell H4 and the excel form is:
= COUNT (B2:B17)- COUNT (H1:H2)

The Standard Error (S.E) of experimental
Je IS measured from the values in column

0) The S.E. of the exp.values, R and ClI

are automatically calculated: 1.407, 0.995
and 3.017, respectively for Langmuir
isotherm.

B by Equation (3). Formulate the S.E. P) Similarly, the S.E. of the exp; galues, R

equation in excel function and enter in the
column H5. As this is an array, it needs to
be pressed ctrl+alt+enter together and the
excel form is:

= {SQRT (SUM((B2:B17- C2:C17)"2)/H4)}

The value of Ris determined by Equation

(4) for Langmuir isotherm and Equation
(7) for Pseudo-2nd-order kinetics model.

It is calculated by entering the following ")
formula in H6 and expressing it as an array
formula as described below:

= {1-(SUM((B2:B17#C2:C17)"2)/
SUM((B2:B17 - H3)"2))}

k) In order for the confidence interval of the

fit to be calculated, the critical t value at a
significance level of 95% is calculated by
entering the following formula in H7.

= TINV (0.05, H4)

The confidence interval is defined as

and CI are automatically calculated: 3.481,
0.995 and 7.584, respectively for Pseu-
do-2nd-order kinetics model.

q) Insert initial estimates (e.g. 40 and 2,

respectively) of the parameterg/q. and
constant K/K, into cells H1 and H2,
respectively for isotherm and Kkinetics
model before running the algorithm.

Now execute the SOLVER to calculate
and fit the data.

s) Graph Columns C, D and E versus

Column A such that they are displayed as
continuous lines on the graph as illustrated
in Figures 4 and 5. These lines show the
fitted lines after running the algorithm, but
before running algorithm it may be shown
different type of lines. The following
section describes manipulations that allow
SOLVER to improve the fit.

Oemodel” Critical t*S.E. of Exp. @ Thusin 24 Operation of SOLVER and controls

H8 enter = Critical t*S.E. of Exp..q
=H7 *H5

Open the SOLVER function from the Tools

menu. The dialogue box showed in Figure 3A

m)Enter the following formula in D2 and gppears the SOLVER. If SOLVER is not in
copy it down to D17. This calculates thethis menu it should be installed, and use help
upper confidence limits (95%) of thefrom Excel for installation procedure if need-
model prediction. ed. The above procedure sets up the excel
=C2+Cl=C2 + $H$8 sheet that SOLVER requires in order to fit a

n) Similarly, enter = C2 — CI = C2 $H$8 in data _to the_ experimental dat_a for non-linear
E2 and copy down to E17. This calculateguncuor," Simply enter the swtab!e parameter
the lower confidence limits (95%) of thevalues in Cqumn_H ar?d the function in a form
model prediction. that Excel recognizes in Column C.
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A | B | c [ o | E JF G | H [T

1 C. Exp. q. Langmuir, q. Upper Cl LowerCl q, 59.3355258898998

2 |0.8613  0.059 =(SHS1*SHS$2*A2)/(1HSHS2*A2)) =C2+SHS8 | =C2-SHS8 K. 0.0192632647996077

3 (06411 0451 =(SHS1*SHS2*A3)/(1+(SHS2*A3))  =C3+SHS8  =C3-SHSS Mean of exp. q. =AVERAGE(B2B17)

413 0.899 =(SHS1*SHS2*A4)/(1+(SHS2*A4))  =C4+SHS8  =C4-SHSS df =COUNT(B2B17)-COUNT(HI:H2)

5 13.001 1.718 =(SHS1*SHS2*AS5)/(1+(SHS2=A5))  =C5+SHS8  =C5-SHSS SEofexp.q. =SQRT(SUM(B2B17-C2:C17)"2)HS) Array
6 (62225 4551 =(SHS1*SHS2*A6)(1+(SHS2*A6))  =C6+SHS8  =C6-SHSS R? =1-(SUM((B2B17-C2:C17y"2)/SUM((B2B17-H3)"2)) |Array
7 (134 291 =(SHS1*SHS2*AT)/(1+(SHS2*AT))  |=C7+SHS8 |=C7-SHSS Crtical t =TINV(0.05.H4)

8 (13.5825 12669 =(SHS1*SHS2*A8)/(1+(SHS2*AR)) =C8+5H58 =C8-SHS8 [H] =HT*H5

9 (26.68 19844 =(SHS1*SHS2*A9)/(1-+SHS2*AM) =C9+5H38 =C9-SHS8

[ 10|34.095 24951 =(SHS1*SHS2*A10)/(1+(SH52*A10)) =C10+3HS8 =C10-SH3§ |

[ 11[6444 33472 =(SHS1*SHS2*A11)/(1-+(SHS2*A11)) |=C11+SHSS |=C11-SHSS RMSE  =SQRT(SUM(B2BI17-C2CI7Y2)/(COUNT(BEBIT-2)) array
[12]9465  39.02 =(SHS1*SHS2*A12)/(1+(SHS2*A12)) =C12+$HSE =C12-SHSS 5 N ) . B i
113(12879 43782 =(SHS1*SHS2*A13)/(1+(SHS2*A13)) =C13+SHSE =C13-SHSE X “EOMEBZ BT CZEITCZEIT) ey

| 14|17108 46914 =(SHS1*SHS2*A14)/(1+(SHS2*A14)) =C14+SHSE =C14-SHSR

| 15|226 4752 =(SHS1*SH$2*A15)/(1+HSHS2*A15)) =C15+SHSE |=C15-SHSE

| 16[281 295 49051 =(SHS1*SHS2*A16)/(1+H(SHS2*A16)) =Cl6+SHSE =Cl16-SHSS

17 (3291 50.08 =(SHS1*$HS2*A17)/(1-+HSHS2*A17)) |=C17+SHSE |=C17-SHSS

18

Figurel The experimental data are entered into Column ABamdth all Excel functions into
spreadsheet template for non-linear regressiorangiuir Isotherm

24 ~ &
A | B | c [ D I E [FT G [ H EE

1 |Time, t Exp. qt Pseudo 2nd Order Upper Cl Lower Cl e 142,546
200 0 =(SHS2*(SHS1"2)*A2)(1+SHS1*$HS2*A2)  =C2+SHS8 =C2-SHSS K, 0.0002
31 08 =(SHS2*(SHS1/2)*A3)/(1+SHS1*SHS2*A3)  =C3+SHSE =C3-SHSS Mean of g, 100942
4130 614 =(SHS2*(SHS1~2)*A4)/(1+3HS1*3HS2*A4)  =C4+SHS® =C4-SHSS df =COUNT(B2B15)-COUNT(H1H2)
5160 83.84  =(SHS2*(SHSI"2)*AS)(1+SHS1*SHS2*AS)  =C5+SHS8 =C5-SHSS SEofq, =SQRT(SUM((B2B15-C2C15y"2)H4) Array
6 90 108.68  =(SHS2*(SHS1/2)*A6)/(1+SHS1*SHS2*A6)  =C6+SHSE =C6-SHSS R? =1-(SUM((B2B15-C2:C15)"2)/SUM((B2B15-H3)"2)) |Aray
7120 11156  =(SH32*(SHS1A2y*AT)/(1+SHS1*SHS2*AT) | =C7+$HS8 =C7-SHS$8 Crtical t =TINV(0.05.H4)
§ 180 120428 =(SH32*(SHS12)*A8)/(1+SHS1*SH32*A8)  =C8+SHS8 =C8-SHS8 (H] =H7*H5
| 9 1240 122456 =(SHS2*(SHS1"2)*A9)/(1+SHS1*SHS2*A9)  =C9+SHS8 =C9-SHS8
10300 126488 =(SHS2*(SHS1"2)*A10)/(1+SHS1*SHS2*A10) =C10+3HS8 =C10-$HS8
| 11]360 13226  =(SHS2*(SHS1"2)*A11)(1+SHS1*$HS2*A11) =CI1+SHSR =C11-SHS8 | NSD  =100*(SQRT(SUM({((B3:B15-C3:C15)(BIBLI) 2¥(COUNT(BIBIF-1))  array
121420 13496  =(SHS2*(SHS1"2)*A12)(1+SHS1*SHS2*A12) =CI12+3HS8 =C12-SHS8 = | ARE =(100/COUNT(B3B15)-1)SUM(B3B15-C3:CLI5)(B3B1N) array
(13 1440 137624 =(SHS2*(SHS$1"2)*A13)/(1+SHS1*5HS2*A13) =CI13+SHSE =C13-SHS8
| 141500 135572 =(3HS2*(SHS1 2)*A14)/(1+3H$1*SHS2*A14) =C14+SHS8 =C14-SHS8
| 151560 137.12  =(SHS2*(SHS1°2)*A15)/(1+5HS1*SHS2*A15) =C15+SHS8 =C15-SHSS
i

Figure2 The experimental data are entered into Column ABamdth all Excel functions into
spreadsheet template for non-linear regressiorsefid-2nd-order kinetics model

A B

Solver Parameters ____ . | L2 ) "o lver Options d . x|

Set Target Cell: sHsh =

e To: s S " e — 5 Max Time: 100 seconds OK

By Changing Cells: g Iterations: 100 Canicel
SHs2,6Hs3 [%-

LRI == Predision; 0,000001 | Load Model...

Subject to the Constraints: Options 1
‘ 7' Tolerance: 5 %% Sawve Model. .. .
(3

i

[ Delete | | Assume Linear Model [ use Automatic Scaling
I ’EI i || Aszume Mon-Megative 7] Show Tteration Results
— L) Estimates Derivatives Search
| @ Tangent @ Forward @) Newton
| () Quadratic ) Central ) Conjugate

o ——— e ————

Figure3 The built-in ‘Solver’ functions for running the sgtalgorithm and advance optigh.
The ‘Solver’ dialogue box used as an interface betwthe ‘Solver’ function and data on the
spreadsheeB: The control and fine tune of algorithms using tBelver Options’ dialogue box
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N19 - b2l
A | B | e | Db | E JF| @ H | ¢ | Kk | & [ M |
| 1| €. Exp.q. Langmuir,q. UpperCl Lower Ci U 59.336 RMSE | 1.4067 array
2| 0.861 0.059 0.968 3985 2049 K 0.019 x 0.854 array
3| 0.641 0.451 0.724 3.741 2293 Meanofexp.q. 23.993
| 4| 1.300 0.899 1.450 4467  -1.567 of 14.000
| 5| 3.001 1.718 3.243 6260 0226 SEofexp.q. 1.407 Array
(6| 6.223 4,551 6.351 9368 3334 R? 0.995 | Array
7 | 13.400 8.91 12.174 15191  9.157  crticalt 2.145
8 | 13.583 12,669 12.305 15322 9288 ¢l 3.017
9| 26.680  19.844 20143 23.160 17.126 i
(10| 34.095  24.951 23522 26.539  20.505 . ]
(11 64.440  33.472 32862 35879 29845 _ f.__/__...—— e
12| 94.65 39.02 38319 41336 35302 ot
(13| 128.79]  43.782 42290 45307 39273 EX
14| 171.08  46.914 45.522 48539 42503 T
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Figure4 The excel sheet after executed the algorithnbdmgmuir isotherm model with
predicted parameters and fitted data curve witlearpental data curve

-

A [ B ] c | b | E JF] G [ H ] [+ k T L [ wm |
1 Time,t Exp. qt Pseudo 2nd Order Upper Cl Lower CI qe 142.546 NSD  109.779 array
3 | 0 0.00 0.00 7.58 -7.58 K> 0.000194 ARE  -32.025 array
E3 1 0.80 3.84 11.43 -3.74 Mean of ¢ 100.942
4 | 30 61.40 64.68 72:27 57.10 df 12.000
& 60 83.84 88.99 96.57 81.40 SE of q; 3.481 Array
? 90  108.68 101.73 109.31 94.14 R? 0.995 Array
7| 120 111.56 109.57 117.16  101.99 Crtical t 2179
g | 180  120.43 118.73 126.31 111.14 cl 7.584
E 240 122.46 123.90 131.49 116.32
10 300 126.49 127.23 134.81 119.65
11 360  132.26 129.55 137.13 121.97
|12 420 134.96 131.26 138.84 123.68 5
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Figure5 The excel sheet after executed the pseudo-2ret-&ndetics model with predicted
parameters and fitted data curve with experimeddtd curve

After open the SOLVER, set the ‘target cell'optimal

values of gg. and K/K; are

to $H$6, ‘equal to’ max and ‘by changing cells59.336/142.546 and 0.019/0.00019, respec-
to $H$2, $H$3. Now execute ‘Solve’ in thetively. The maximal value of Rs 0.995/0.995
right corner (Figure 3A) and the value willfor isotherm and kinetics model, respectively.
change. These changes will be displayed on tide continuous thick line in Figures 4 and 5
spreadsheet template (Figures 4 and 5). Théath A marker illustrates the best fit and it is
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clear that it is an improvement over the fit Use Automatic Scaling: This option can be

provided by the initial parameter valuesused for automatic scaling when inputs and
Additionally, the confidence intervals aroundoutputs have large differences in magnitude. It
the fit have been reduced. is recommended that this box keep checked for

The default solver settings can be changed! ‘Solver’ models.
by opening the Solver Options (Figure 3B). Assume Non-Negative: No constraints
Normally, the default setting is appropriate fohave been used for all adjustable cells to get a
most situations but that can be changed infower limit of O for all adjustable cells.

required targets. The most relevant to the show |teration Resultss Set to have

protocol in this paper are described as below.:.gg|yer’ pause to show the results for every
Max time: This is the amount of time in iteration.

seconds that ‘Solver’ will be allowed to runthe Egtimates; It determines subsequent esti-

iteration process before stopping. The defaufhates of the basic variable values at the outset
value is 100 s. of each one-dimensional search.

Iterations: It is the number of iterations that  Tangent: It uses linear extrapolation from a
‘Solver” will carry out the calculation before tangent vector. The Tangent choice is slower
StOppIng The default value is 100 and it W|”but more accurate.
provide the optimal solution before either of Quadratic: This option extrapolates the

these limits is reached and will present th?ninimum (or maximum) of a quadratic fitted

results.. . _ . to the function at its current point.
Precision: It is determined how the calcu- Derivatives This option denotes the

lated values are precise to meet a target fifference used to estimate partial derivatives

satisfies a lower or upper bound. The defaulf o opjective and constraint functions in the
value is 0.000001. The higher the precision, the - <

more time is taken to reach a solution. _ ] o _
Forward: The previous iteration is used in

Tolerance: This option is appropriate only conjunction with the current point by this

to problems with integer constraints. Theoption. It saves the recalculation time for finite

pelrcgnt V§|||ufe pr”y r\]Nh_'Ch the target _ceII Ofdadifferencing, which can account for up to half
solution will fulfill the integer constraints and ¢ . 440" <o jution time.

it can differ from the true optimal value; c - | diff q ds onl
however, it still be considered acceptable. A entral: Central difference depends only on

lower tolerance tends to slow up the solutiowe_ %rlesgnt pomt_ ag?‘ d|§turbfs theh de0|§|on
process and the default value is set at 5. variables in opposite directions from that point.

C It tells the ‘Solver’ when t Although this engrosses more recalculation
t ortlr\]/er%enc?, S e -H? V(.aé \;V e’n to time, it may provide better result to choose a
Stop The Tierative process. 1ne SOVer StOPgirection when the derivatives are rapidly

after five iterations, if the calculated value 'nchanging, and hence fewer total iterations.

‘target cell’ is less than the number in the he ifies the alaorith qf
‘Convergence box’. The smaller the conver- ch: It specifies the algorithm used for

gence value, the more time ‘Solver’ takes tgach iteration to find the direction to search.
reach a solution and the default value is 0.001. Newton: The default choice is Newton that
Assume Linear Mode: This analysis is requires more memory but less iteration than

non-linear regression, so leave the onOes the Conjugate gradient method.

unchecked. It could be checked only if the Conjugate: It requires less memory than the
model is solved in linear. Newton method but typ|Ca”y needs more
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iteration to reach a particular level of accuracyexperimental data. The goodness of fit of the

Load Model: It allows loading a previously model prediction to the experimental data were

saved fitted routine with newly data. evaluated by R and RMSE andx® for

Save Moddl: This option allows the user to Langmuir model; and NSD and ,ARE for
Pseudo-2nd-Order model (Hossain et al.,

save the preferable fitting routine for future
Lse. 2012a; Wang et al., 2004). Thé Ralues also

calculated from linear regression and
MATLAB analysis to judge of the best fit and

compared. Normally the sum of the squares of
regression computes how far the predicted
values differ from the overall mean of actual

The spreadsheet based models were execudues, and is equivalent to the sum of the
with the experimental data of copper(ll),squares, the denominator of Equation (4) for
lead(Il) and cadmium(ll) adsorption on garderdsotherm and Equation (7) for Kinetics model.
grass. The parameters of Isotherm and kinetiédter using ‘Solver’ analysis, the united values
model from the predictions were compare®f the parameters for Langmuir isotherm and
with linear analysis and MATLAB modelling Kinetics model with linear and MATLAB
(procedure details is not provided in this papegnalyses are presented in Tables 1 and 2.

3. RESULTSAND VALIDATION OF
THE MODELS

parameters. The model analysis process and after analy-
sis with ‘Solver’ are shown in Figures 1 and 4
3.1 Verification of models data respectively. The model fitting statistics of the

Langmuir and Kinetics model from Excel

Some conv_entional programmes and mOdeépreadsheet, Linear and MATLAB program
ling are designed based oln the standarql error\%re used to explain ‘predicted maximum or
tEe paralmeters for nor-llnear reg_;esstl)n, lblétquilibrium adsorption’ with ‘experimental
tblese va ulelf arednot always considere vha ugt‘c'jsorption’ relationships (Table 1). According
e (Motulsky and Ransnas, 1987). As t ©3f the R values (Table 1), the experimental

errors are neither additive nor symmetricaldata for copper(ll), lead(ll) and cadmium(ll)

and exact confidence limits cannot be es“éldsorption on garden grass were highly fitted

mated by non-linear functions (Motulsky anqNith Langmuir isotherm prediction. It is

Ran_snas, 1987)' This_E>_<ceI bas:ed program éﬁ)parent that the linear analysis showed low
desgngd with the bw!t-ln. functloqs and thefitness with experimental data a$ ®alues of
coefficient of determination (R is used ) 3g5 6700 and 0.142 for copper(ll), lead(ll)
instead of standard error of the parameters f%rnd cadmium(ll) adsorption on garden grass
non-Ilne_ar regres_S|on_. It is assumed _that %spectively. Conversely, the Excel Spread-
appropriate function is used to describe thgheet and MATLAB program analysis
experimental data and it is informed that hov}ﬁemonstrated high Rwith prediction for
accurately the function describes or fits th%xperimental data for copper(ll), lead(ll) and
o . admium(ll) adsorption on garden grass as the
of determination and its value represents ﬂ\‘?alues were 0.995 and 0.997 for copper(ll)
fraction of the overall variance of the ‘pre-, 996 4nd1.00 for lead(ll) and 0.996 and 0.999
fj'Cted. model data} thgt Is explained by th?or cadmium. It is revealed that both analyses
experimental data’. It is calculated from theSystems oredicted similar data which were

sum of the squares of the residuals captured tgﬁ)se to the experimental data. Furthermore,
error between the model prediction and thﬁ1e Excel Spreadsheet and MATLAB program
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analysis indicated similar prediction formination, B values by excel spreadsheet,
experimental data for copper(ll), lead(ll) andinear and MATLAB analysis were similar
cadmium(ll) adsorption on garden grass. Thegdable 2), which implies that all analysis were
two analyses systems predicted the parametgnoperly fitted with experimental data. Thé R
for Langmuir isotherm such as,dhat were values for excel model, linear and MATLAB
similar for the three metals adsorption. Thanalysis were 0.995, 0.995 and 0.998 for
predicted values of,gfrom Excel Spreadsheet copper(ll), 0.997, 0.998 and 0.998 for lead(ll),
and MATLAB program analyses were 59.33@and 0.996, 0.999 and 0.998 for cadmium(ll)
and 59.899 mg/g for copper(ll), 63.663 andadsorption onto garden grass.

63.509 mg/g for lead(ll), and 42.310 and |jnear analysis was found to be equal
41.560 mg/g for cadmium(ll) adsorption. Onyajidity to the experimental with excel model
the other hand, linear analysis predicted mucind MATLAB analysis. However, Kvalues
lower values for g for three metals adsorp-py linear analysis were different with the
tion. The model constants Kvere predicted prediction of other two models while,Kby

at similar values by the two analyses systemcel spreadsheet and MATLAB analyses were
but different values found by linear analysissimilar and almost equal to the experimental
(Table 1). A plot of predicted data (Langmuirdata (Table 2). From the above discussion,
Qe) versus experimental data (Expe) or excel spreadsheet method can be reliable and
copper(ll) adsorption onto garden grass byseful for kinetics analysis.

excel model is shown in Figure 4. As can be

seen in Figure 4, Excel spreadsheet model hg® s atistical significance of excel

similar fit to measured values/experimental modelling

data of copper(ll) adsorption to MATLAB

analysis (R = 0.995 compared to’R= 0.997) Normally, non-linear regression programs
(Table 1). Similar R values for lead(ll) and estimate of the standard error of (the) param-
cadmium(ll) adsorption were predicted byeters. These values sometimes mislead the
both excel spreadsheet and MATLAB analysigredictions and in non-linear functions,
The error functions RMSE angf were also additive nor symmetrical errors, and exact
calculated and tabulated in Table 1. Surprigonfidence intervals cannot be computed
ingly both errors were predicted or estimateBowen and Jerman, 1995; Motulsky and
at similar values by excel and MATLAB Ransnas, 1987). The stated standard errors are
analysis. The results showed that overafased on linearising assumptions and will
performance of excel model was C|ear|y’i|WayS underestimate the true uncertainty of

equivalent to technically advanced MATLABany non-linear equation and not proper to use
as shown in Table 1. the standard error values in further formal

gStatistical calculations (Brown, 2001; Speetrs

cadmium(ll) adsorption onto garden graséﬂ., 2003). Asymptotic standard errors of the
were also analysed by MS Excel SONeparameters have been calculated, but a com-

function - spreadsheet, linear and MATLABPIEX and time consuming computer program is
analysis. The MS Excel Solver function _needed to evaluate the Hessian matrix (Brown,

spreadsheet process is shown in Figure 2. TR0L Hong et al., 2008). Thus, an approach is
analysed data are shown in Figure 5 an@dopted in this paper to estimate th standard
tabulated in Table 2. It is noticeable that th&Or Of the data around the prediction curve
predictions of equilibrium adsorption,  q and is calculated by dividing the sum of the

kinetics constant, Kand coefficient of deter- Squares of the residuals by the degrees of

The kinetics data for copper(ll), lead(ll) an
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freedom to get the variance of experimentdunction (tinv) which allows calculation of the
data. The square root of this value produces tl@itical t-value, thus bypassing the need to
standard error of the residuals and is used took up tables of t values. The formula in cell
calculate the confidence interval. This confiH7 (Figures 1 and 2) calculates this value for
dence interval is a sign of the probability thathe desired confidence interval and degrees of
the true value/experimental data lie within théreedom (AbuLail et al., 2012; Hong et al.,
range specified by the probability formula2008). Once this value has been calculated, the
(Brown, 2001). It commonly uses 95% confi-confidence interval is simply the best fit at all
dence interval, which means there is a 95%ata points. It is found that the MS Excel
probability that the experimental value liesSolver function - spreadsheet method fulfilled
within the interval. To calculate the confidenceall the statistical measures to predict the real
interval the Critical t-value must be calculated/ariance of probability of experimental data for

and it depends on the confidence interval anobth isotherm and kinetics adsorption of
the degrees of freedom (Brown, 2001; TramSeketals.
and GorSek, 2008). Excel has a built-in

Tablel Comparison of equilibrium’s modelling parametemirMS Excel Solver function -
spreadsheet method with the analysed parametenslireear and MATLAB analyses
for Langmuir isotherm

Name of metals
adsor ption onto
grass

Parametersfrom Excel
modelling for Langmuir
isotherm mode

Parametersfrom
Linear analysisfor
Langmuir isotherm
mode

Parametersfrom
MATLAB analysisfor
Langmuir model

Copper(ll)

Lead(ll)

Cadmium(ll)

Gh.exp= 50.89 mg/g
Om.Model = 59.336 mg/g
K_=0.019

R?=0.995

RMSE = 1.407

X’ = 0.854

On.exp = 56.302 mg/g
Om.Model = 63.663 mg/g
K.=0.027
R?=0.999

RMSE = 0.833

X* = 13.607

Ghexp = 37.64 mg/g
Om.Model = 42.310 mg/g
K.=0.020
R?=0.996

RMSE = 1.475

x* = 1.029

Om.exp = 50.89 mg/g
Om.Model = 9.597 mg/g
K_.=0.019
R?=0.382

Om.exp = 56.302 mg/g
Om.Model = 5.659 mg/g
K. =2.539
R*=0.700

Omexp = 37.64 mg/g
Om.Model = 1.199 mg/g
K.=0.167
R*=0.142

Om.exp= 50.89 mg/g
Om.Moder= 59.899 mg/g
K_=0.0188
R?=0.997

RMSE = 1.426
x*=0.768

Om.exp = 56.302 mg/g
Om.Model =63.509 mg/g
K_=0.0198
R?=1.00

RMSE = 0.789

X% =12.908

Omexp = 37.64 mg/g
Om.Model = 41.560 mg/g
K_=0.0199
R?=0.999

RMSE = 1.365

x> =1.015
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Table2 Comparison of kinetic's modelling parameters fror8 Excel Solver function -
spreadsheet method with the analysed parametensLireear and MATLAB analyses
for Pseudo-2nd-Order model

Name of Parametersfrom Excel Parametersfrom Parametersfrom
metals modelling for Pseu- Linear analysisfor MATLAB analysisfor
adsor ption do-2nd-Order model Pseudo-2nd-Order Pseudo-2nd-Order
onto grass model model
Copper(ll) Q.exp= 134.96 mg/g Oe.exp= 134.96 mg/g Oe.exp=134.96 mg/g
Oe.modei=142.540 mg/g Oe.mode= 140.845 mg/g Oe.model= 142.550 mg/g
K, =0.000194 K, =0.00016 K, =0.000123
R®=0.995 R?=0.995 R*=0.998
NSD =109.810 - NSD = 98.055
ARE =-32.034 - ARE = -31.056
Lead(ll) G.exp= 4.8036 mg/g Oe.exp= 4.8036 mg/g Oe.exp= 4.8036 mg/g
Oe.model= 4.851 mg/g Oe.model= 4.733 mg/g Oe.model= 4.863 mg/g
K, =0.286 K, =2.706 K, =0.289
R? = 0.997 R?=0.998 R?=0.998
NSD =2.112 - NSD = 2.567
ARE =-0.052 - ARE =-0.053
Cadmium(ll) Q.exp= 2.900 mg/g Oe.exp= 2.900 mg/g Oe.exp= 2.900 mg/g
Oe.model= 2.962 mg/g Oe.model= 2.921 mg/g Oe.model= 2.986 mg/g
K,=1.089 K, =4.825 K,=1.289
R?=0.996 R?=0.999 R?=0.998
NSD = 2.547 - NSD = 2.897
ARE =-0.068 - ARE =-0.078

3.3 Advantagesand limitations

process in the wrong direction and thus wrong

solution.

The above discussion indicated that although
this analysis protocol could be seen as robust

and reliable method for isotherm and kinetic§L CONCL USION

adsorption modelling as compared to other

programs, a few points should be taken in mingotherm and kinetics adsorption of metals are
before formulating the models. Firstly, theimportant models to predict and explicit the
SOLVER will take longer time while the inert characters of biosorbents for researchers.
number of parameters in the function is largefn this context, non-linear modelling is a
Furthermore, the more constraints or increagpowerful technique for standardizing the
ing tolerance or precision in the function, theexperimental data. The invention of computers
longer SOLVER will take. Secondly, sensiblenas made the modelling of data easier, quick
initial parameters are important and armand reliable for the users. This paper described
inappropriate parameter can lead the iteratiahe method suitable for users with basic
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knowledge of excel and do not require a vast 158(1), 73-87.

understanding of the mathematics behind thgimbert, F., Morin-Crini, N., Renault, F., Badot,

processes involved in this modelling. It is pm. and Crini, G. (2008). Adsorption isotherm

important, however, is that the users under- models for dye removal by cationized

stand enough about the data to be fit to use the starch-based material in a single component

correct type of analysis, and to judge goodness system: Error analysislournal of Hazardous
of fit from calculated estimates. Most of the \aterials, 157(1), 34-46.

researchers might have this knowledge .tgu’ S.B., Yao, J.M., Yuan, Q.P., Xue, P.J., Zheng,
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