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ABSTRACT 
This paper aims to introduce a simple method to run a complicated non-linear analysis of isotherm and kinetics 

models for metals biosorption based on input functions of spreadsheets. A robust method is demonstrated here to 

exploit the ‘SOLVER’ function available in Microsoft (MS) Excel spreadsheet. It is more economic and user 

friendly than specialized computer programmes. In this study, an iterative method was proposed to produce the op-

timal goodness of fit between experimental data and predicted data. This was described the implementing method 

of a set of real data (garden grass as biosorbent) and the predicted results were compared with linear analysis and 

MATLAB analysis. The R2 values found from MS Excel spreadsheet were 0.995, 0.999 and 0.996 while being 

0.997, 1.000 and 0.999 by MATLAB for copper, lead and cadmium adsorption, respectively onto garden grass. The 

prediction of maximum adsorption, qm by excel (59.336, 63.663 and 42.310 mg/g) were very similar to MATLAB 

(59.889, 63.509 and 41.560 mg/g). The predictions of kinetics parameters were also close to MATLAB analysis. 

Hence, the MS Excel Spreadsheet method could be a handy tool for biosorption models. 

Keywords: Solver function; Microsoft Excel spreadsheet; non-linear analysis; iteration; goodness of fit; MATLAB 

 
1.  INTRODUCTION 

To explore novel biosorbents in accessing an 
ideal biosorption system, it is essential to es-
tablish the most proper adsorption equilibrium 
correlation and kinetic correlation (Srivastava 
et al., 2006). It is crucial for reliable prediction 
of adsorption parameters and quantitative 
comparison of adsorbent behavior for different 
adsorbent systems or experimental conditions 
(Gimbert et al., 2008; Ho et al., 2002). In the 
perspective, equilibrium relationships, gener-
ally known as adsorption isotherms, describe 
how pollutants interact with the adsorbent 
materials, and thus are critical for optimization 

of the adsorption mechanism pathways,    
expression of the surface properties and    
capacities of adsorbents, and effective design 
of the adsorption systems (El-Khaiary, 2008; 
Thompson et al., 2001). Similarly, the kinetics 
parameters, generally adsorption time and 
pattern of metals onto biosorbents are known 
from the fitness of kinetic parameters. 

In the past, linear least-squares method was 
widely used by transforming the equation into 
a conventional linear form to calculate or pre-
dict the isotherms/kinetics parameters or the 
most fitted models. Principally, the models are 
subjected to their goodness of fit to the    
experimental  data  with  the  magnitude  of    
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coefficients of determination that close to unity 
(Wong et al., 2004). On the other hand, a sig-
nificant limitation related to the linearized 
form of isotherm/kinetics equation has recently 
been pointed out, which produces a vast 
amount of different outcomes, implicitly alter 
the error structure, violates the error variance 
and normality assumptions of standard least 
squares, leading to the bias of the adsorption 
data (Han et al., 2007; Ho, 2004; Hong et al., 
2009; Tunali and Akar, 2006; Vasanth and  
Sivanesan, 2007). In this context, a non-linear 
form of the isotherm and kinetics models with 
error analyses and optimization techniques are 
needed. In addition, evaluating the accuracy 
and consistency in parameters prediction or 
estimation are also demanding. Moreover, a 
curve fitting is applied to describe experi-
mental data in all fields of research. The better 
the fit, the more accurately the function de-
scribes the data. Over the past few decades, the 
exponential development of computer pro-
gramming has provided scope to calculate and 
prediction of model parameters. The introduc-
tion of computers into research makes it 
straightforward to fit data with simple    
functions such a linear regression, but it is 
more difficult and complicated to fit data with 
non-linear functions. Most of the programs (e.g. 
MATLAB, C++, Microcal Origin, Sigma Plot or 
Graph pad Prism) require special mathematical 
knowledge to use and provides different    
options such as capability of fitting user-input 
functions to data. In addition, these programs 
are expensive and significantly excess cost for 
simply fitting the data with non-linear func-
tions. Additionally, these programmes cannot 
easily manipulate the data and tend to display 
data, graphs, results, and analysis in multiple 
windows, which can lead to confusion and 
figures are not useable for article publication. 

An alternative method is to use Microsoft 
Excel to fit non-linear functions. An advantage 
of this method is that Excel is probably    
included in the computer package as part of 

Microsoft Office, and thus no additional cost is 
required. Spreadsheet programmes are among 
the most commonly used software, and most 
researchers have experience with them. Excel 
offers a friendly user interface, flexible data 
manipulation, built-in mathematical functions 
and instantaneous graphing of data. It contains 
a function, named SOLVER, which is ideally 
suited to fitting data with non-linear functions 
via an iterative algorithm (Bowen and Jerman, 
1995), which minimizes the sum of the squared 
difference between experimental data and 
predicted data. The objective of this present 
study was to propose and describe a method of 
non-linear regression using the SOLVER 
function of Excel as well as to compare the 
predicted parameters for Langmuir isotherm 
and Pseudo-2nd-order models with the 
MATLAB and linear analysis. 

 

2.  METHODS 

The methods illustrated in this paper are: (i) to 
predict the optimum values of parameters for 
isotherms and kinetics models, (ii) to find out 
higher fitness of models, and (iii) to predict the 
curve fitted with experimental values with MS 
Excel spreadsheet using Solver function. They 
were carried out on PC operated by Windows 
2007 and MS Office 2007. This protocol   
explained entering the experimental data 
manually into Excel and preparing graphs from 
data. On this occasion, the formulated algo-
rithm is carried out and the predicted curve is 
overlaid on the experimental data points. De-
gree of fitness of predictions is also calculated 
so that the accuracy of fit can be measured. 

2.1  Models and assumptions 

The Langmuir adsorption isotherm is perhaps 
the best known of all isotherms describing 
adsorption. The Langmuir model is obtained 
under the ideal assumption of a totally    
homogenous adsorption surface (Bilgili, 2006) 
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and represented as follows (Langmuir, 1918): 
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where Ce is the equilibrium concentration 
(mg/l), qe is the amount of metal ion adsorbed 
(mg/g), qm is the qe for a complete monolayer 
(mg/g), and KL is the constant related to the 
affinity of the binding sites and the energy of 
adsorption (l/mg). 

The pseudo-second-order model proposed 
by Ho and McKay (1998) is based on the  
assumption that the adsorption follows second 
order adsorption. The linear form can be  
written as follows: 
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where qe (mg/g) and qt (mg/g) are the   
adsorption amount at equilibrium and time t 
(min) respectively and K2 (g/mg�min) is the 
rate constant of adsorption. 

The modelling of the models is formulated 
on the basis of some essentially important as-
sumptions. The following are the assumptions: 

(i) The equilibrium concentration, Ce (mg/l) 
for equilibrium isotherm and contact time, t 
(min) is considered as an ‘independent’ 
variable. 

(ii)The amount of metal ion adsorbed, qe (mg/g) 
and the adsorption amount at any time t 
(min), qt (mg/g) are assumed as ‘dependent’ 
variables. 

(iii) The maximum monolayer adsorption  
capacity, qm (mg/g) and Langmuir constant 
KL (l/mg) are presumed as predictable 
variables based on the best fitted condition 
of isotherm model. 

(iv) The adsorption amount at equilibrium, qe 

(mg/g) and the rate constant of adsorption, 
K2 (g/mg�min) are assumed as predictable 
variables based on the best fitted condition 
of kinetics model. 

2.2  Goodness of fit 

Goodness of fit is an essentially important pa-
rameter that estimates how well the curve (i.e. 
the prediction) pronounces the experimental 
data. Generally least squares method is used to 
measure of the goodness of fit. It is based on 
the theory that the scale of the difference be-
tween the experimental data points and the 
prediction curve is a good measure of how well 
the curve fits the data. For the purposes the 
least squares fit method will be demonstrated 
by linear regression where ‘independent’ and 
‘dependent’ variables are used.  

In the past, non-linear data would be 
changed into a linear form and consequently 
analysed by the least squares fit method. This 
analysis could yield inaccurate measurements 
and predictions of the data and may alter the 
experimental error or alter the relationship 
between the ‘independent’ and ‘dependent’ 
variables. It is presumed that this method is 
erroneous and old fashioned which should not 
be operated. For data not describable by a  
linear function, it is crucial to apply a protocol 
that will fit a non-linear function to the data. A 
suitable method for this procedure is called 
iterative nonlinear least squares fitting. This 
process will fulfill the same goal as used for 
linear regression, i.e. minimizing the value of 
the sum of squared of the difference between 
data and prediction. However, it is still differ-
ent from linear regression in a way that it is an 
iterative process based on algorithm. Initial 
parameters are estimates based on previous 
experience of the data and on a sensible guess 
based on knowledge of the function used to fit 
the data. The following parameters are meas-
ured and judged the goodness of fit: 

(i) The sum of squares (SS) 

The best fit of the data is judged by the sum of 
squares (SS) and the smallest value for the 
sum of squares (SS) is the best fitted data of 
the model. This is described by the function: 
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where, qexp is the experimental data, qmodel is 
the value predicted by the models for curve at 
corresponding Ce. The first iteration calculates 
the SS value based on the initial parameters 
and the second iteration involves varying the 
parameter values by a small amount and   
recalculates the SS. This process is repeated 
several times until a smallest possible value of 
SS is achieved. Only a single iteration is   
required for linear regression to get the lowest 
value of the SS, because the second and high-
er derivatives of the function are zero. Con-
versely, the second and higher derivatives are 
not zero for non-linear regression, and thus an 
iterative process is required to calculate the 
optimal parameter values.  

Several algorithms use in non-linear    
regression including the Gauss-Newton, the 
Marquardt-Levenberg, the Nelder-Mead and 
the steepest descent methods (Johnson, 1992). 
SOLVER, which is based on the robust and 
reliable generalized reduced gradient (GRG) 
method can be used as an easy iteration  
protocol. A comprehensive explanation of the 
evolution and operation of this code can be 
found in literature (Lasdon et al., 1978; Smith 
and Lasdon, 1992). All algorithms have  
similar properties, require input initial param-
eters and use these values to get a better esti-
mation of the parameters used in iterative 
process.  

(ii) The coefficient of determination (R2) 

The coefficient of determination, R2, is  
practical as it gives the proportion of the  
variance of one variable that is predictable 
from the other variable. It is a measure that 
allows  verifying how certain one can be in 
making predictions from a certain model. The 
coefficient of determination is such that 0 < R2 

< 1, and denotes the strength of the linear  
association between ‘experimental data, qe.exp’ 

and ‘prediction data, qe.model’. The coefficient 
of determination represents the percent of the 
experimental data that is the closest to the line 
of best fit/prediction. The models fitness is 
signified by the coefficient of determination 
(R2) and the following expression is used to 
determine the R2 (Hossain et al., 2012b): 
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where, qe.exp is the equilibrium sorption  
capacity found from the batch experiment, 
qe.model is the prediction from the isotherm 
model for corresponding to Ce and n is the 
number of observations. 

(iii) Residual root mean square error (RMSE) 
and the chi-square test (χ2) 

Non-linear error functions such as the residual 
root mean square error (RMSE) and the 
chi-square test (χ2) are used to judge the equi-
librium model with the optimal magnitude. 
The standard equations are as follows (Hoss-
ain et al., 2012b): 
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where, ‘qe.exp’ is the equilibrium adsorption 
capacity found from the batch experiment, 
‘qe.model’ is the prediction from the isotherm 
model for corresponding to ‘Ce’ and ‘n’ is the 
number of observations. The small values of 
RMSE and χ2 indicate the better model fitting 
and the similarity of model with the experi-
mental data respectively (Ho et al., 2002). 

(iv) The normalized standard deviation (NSD) 
and average relative error (ARE) 

The kinetics model is verified and optimised 
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by the coefficient of determination (R2), by 
two non-linear errors: the normalized standard 
deviation (NSD) and average relative error 
(ARE). The standard equations are defined as 
(Gu et al., 2006; Hossain et al., 2012b): 
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where, qt.exp and qt.model (mg/g) are experi-
mental (‘exp’) and model (‘model’) predicted 
amount of adsorptions capacity at time ‘t’ and 
‘N’ is the number of observations. The smaller 
values of NSD and ARE imply the better  
fitted model. 

2.3  Algorithm and configuring the 
spreadsheet for non-linear models 

The following process illustrates how to use 
the SOLVER function in Excel to fit data with 
user-input non-linear functions. The procedure 
by which the data fit proceeds is called iterative 
non-linear least squares regression. To execute 
non-linear regression analysis using the 
Langmuir isotherm and Pseudo-2nd-order  
kinetics models, the following procedure must 
be formulated prior to proceed: 

 
a) Enter experimental data onto a spreadsheet 

in two columns, the A column containing 
the ‘equilibrium concentration, Ce (mg/l)’, 
and the B column containing the    
‘equilibrium capacity, qe (mg/g)’ for 
Langmuir isotherm; and ‘equilibrium 
concentration at t, Ct (mg/l)’ in A column 

and ‘equilibrium capacity at t, qt (mg/g)’ in 
B column for Pseudo-2nd-order kinetics 
models. This is shown in Figure 1 for 
isotherm model and Figure 2 for kinetics 
models.  

b) Plot the data from cells A2 to A17 as X 
axis and cells B2 to B17 as Y axis in a 
scatter plot. The data points are displayed 
as filled squares. 

c) Enter labels in cells G1 to G8 to depict the 
contents of the next adjacent cells H. In 
cell G1 enter qm, which will describe the  
maximum adsorption capacity in cell H1. 
Similarly, for cells G2 to G8, KL Mean of 
Exp. qe, df (degree of freedom), S.E. 
(standard error) of Exp. qe, R

2. Critical t 
and CI (confidence interval), respectively.  

d) For Kinetics model, Enter qe in cell G1 and 
K2 in cell G2 and rest of cell G (G3 to G8) 
are same as point 3. 

e) Enter Langmuir Isotherm equation (eq.1) 
in column C (C2 to C17) which gives the  
predicted values of equilibrium adsorption 
capacity, qe for the corresponding equilib-
rium concentration, Ce. The Excel recog-
nized form of the equation is: 

   = ($H$1*$H$2*A2)/(1+ ($H$2*A2)) 

f) For kinetics equation (eq.2) enter the excel 
form function in column C (C2 to C15) 
which give the predicted values of equi-
librium adsorption capacity, qt for the 
corresponding equilibrium time, t. The 
Excel recognized form of the equation is: 

   = ($H$2*($H$1^2)*A2)/(1+$H$1*$H$2*A2) 

g) The mean value of qe for equilibrium  
isotherm and qt for kinetics adsorption are 
calculated from the data at column B. The 
excel recognized form of the equation is 
need to be entered in cell H3 and the form 
is:  

   = AVERAGE (B2:B17) 

h) Enter the df (degree of freedom) function 
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in cell H4 and the excel form is: 

   = COUNT (B2:B17) − COUNT (H1:H2) 

i) The Standard Error (S.E) of experimental 
qe is measured from the values in column 
B by Equation (3). Formulate the S.E. 
equation in excel function and enter in the 
column H5. As this is an array, it needs to 
be pressed ctrl+alt+enter together and the 
excel form is: 

= {SQRT (SUM((B2:B17 − C2:C17)^2)/H4)} 

j) The value of R2 is determined by Equation 
(4) for Langmuir isotherm and Equation 
(7) for Pseudo-2nd-order kinetics model. 
It is calculated by entering the following 
formula in H6 and expressing it as an array 
formula as described below: 

   = {1-(SUM((B2:B17−C2:C17)^2)/  
SUM((B2:B17 - H3)^2))} 

k) In order for the confidence interval of the 
fit to be calculated, the critical t value at a 
significance level of 95% is calculated by 
entering the following formula in H7. 

   = TINV (0.05, H4) 

l) The confidence interval is defined as 
qemodel* Critical t*S.E. of Exp. qe. Thus in 
H8 enter = Critical t*S.E. of Exp. qe   

   = H7 * H5 

m) Enter the following formula in D2 and 
copy it down to D17. This calculates the 
upper confidence limits (95%) of the 
model prediction. 

  = C2 + CI = C2 + $H$8 

n) Similarly, enter = C2 − CI = C2 − $H$8 in 
E2 and copy down to E17. This calculates 
the lower confidence limits (95%) of the 
model prediction.  

o) The S.E. of the exp. qe values, R2 and CI 
are automatically calculated: 1.407, 0.995 
and 3.017, respectively for Langmuir 
isotherm. 

p) Similarly, the S.E. of the exp. qt values, R2 
and CI are automatically calculated: 3.481, 
0.995 and 7.584, respectively for Pseu-
do-2nd-order kinetics model. 

q) Insert initial estimates (e.g. 40 and 2,  
respectively) of the parameters qm/qe and 
constant KL/K2 into cells H1 and H2,  
respectively for isotherm and kinetics 
model before running the algorithm. 

r) Now execute the SOLVER to calculate 
and fit the data. 

s) Graph Columns C, D and E versus  
Column A such that they are displayed as 
continuous lines on the graph as illustrated 
in Figures 4 and 5. These lines show the 
fitted lines after running the algorithm, but 
before running algorithm it may be shown 
different type of lines. The following  
section describes manipulations that allow 
SOLVER to improve the fit. 

2.4  Operation of SOLVER and controls 

Open the SOLVER function from the Tools 
menu. The dialogue box showed in Figure 3A 
appears the SOLVER. If SOLVER is not in 
this menu it should be installed, and use help 
from Excel for installation procedure if need-
ed. The above procedure sets up the excel 
sheet that SOLVER requires in order to fit a 
data to the experimental data for non-linear 
function. Simply enter the suitable parameter 
values in Column H and the function in a form 
that Excel recognizes in Column C. 
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Figure 1  The experimental data are entered into Column A and B with all Excel functions into 
spreadsheet template for non-linear regression of Langmuir Isotherm 

 

 

Figure 2  The experimental data are entered into Column A and B with all Excel functions into 
spreadsheet template for non-linear regression of Pseudo-2nd-order kinetics model  

 

 

Figure 3  The built-in ‘Solver’ functions for running the setup algorithm and advance option. A: 
The ‘Solver’ dialogue box used as an interface between the ‘Solver’ function and data on the 

spreadsheet. B: The control and fine tune of algorithms using the ‘Solver Options’ dialogue box 

A B 
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Figure 4  The excel sheet after executed the algorithm for Langmuir isotherm model with  
predicted parameters and fitted data curve with experimental data curve 

 

 

Figure 5  The excel sheet after executed the pseudo-2nd-order kinetics model with predicted 
parameters and fitted data curve with experimental data curve 

 
After open the SOLVER, set the ‘target cell’ 

to $H$6, ‘equal to’ max and ‘by changing cells’ 
to $H$2, $H$3. Now execute ‘Solve’ in the 
right corner (Figure 3A) and the value will 
change. These changes will be displayed on the 
spreadsheet template (Figures 4 and 5). The 

optimal values of qm/qe and KL/K2 are 
59.336/142.546 and 0.019/0.00019, respec-
tively. The maximal value of R2 is 0.995/0.995 
for isotherm and kinetics model, respectively. 
The continuous thick line in Figures 4 and 5 
with ∆ marker illustrates the best fit and it is 
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clear that it is an improvement over the fit 
provided by the initial parameter values.  
Additionally, the confidence intervals around 
the fit have been reduced. 

The default solver settings can be changed 
by opening the Solver Options (Figure 3B). 
Normally, the default setting is appropriate for 
most situations but that can be changed into 
required targets. The most relevant to the  
protocol in this paper are described as below. 

Max time: This is the amount of time in 
seconds that ‘Solver’ will be allowed to run the 
iteration process before stopping. The default 
value is 100 s.  

Iterations: It is the number of iterations that 
‘Solver’ will carry out the calculation before 
stopping. The default value is 100 and it will 
provide the optimal solution before either of 
these limits is reached and will present the 
results.  

Precision: It is determined how the calcu-
lated values are precise to meet a target or  
satisfies a lower or upper bound. The default 
value is 0.000001. The higher the precision, the 
more time is taken to reach a solution.  

Tolerance: This option is appropriate only 
to problems with integer constraints. The  
percent value by which the target cell of a  
solution will fulfill the integer constraints and 
it can differ from the true optimal value; 
however, it still be considered acceptable. A 
lower tolerance tends to slow up the solution 
process and the default value is set at 5. 

Convergence: It tells the ‘Solver’ when to 
stop the iterative process. The ‘Solver’ stops 
after five iterations, if the calculated value in 
‘target cell’ is less than the number in the 
‘Convergence box’. The smaller the conver-
gence value, the more time ‘Solver’ takes to 
reach a solution and the default value is 0.001.  

Assume Linear Model: This analysis is 
non-linear regression, so leave the box    
unchecked. It could be checked only if the 
model is solved in linear.  

Use Automatic Scaling: This option can be 
used for automatic scaling when inputs and 
outputs have large differences in magnitude. It 
is recommended that this box keep checked for 
all ‘Solver’ models. 

Assume Non-Negative: No constraints 
have been used for all adjustable cells to get a 
lower limit of 0 for all adjustable cells.  

Show Iteration Results: Set to have 
‘Solver’ pause to show the results for every 
iteration. 

Estimates: It determines subsequent esti-
mates of the basic variable values at the outset 
of each one-dimensional search.  

Tangent: It uses linear extrapolation from a 
tangent vector. The Tangent choice is slower 
but more accurate. 

Quadratic: This option extrapolates the 
minimum (or maximum) of a quadratic fitted 
to the function at its current point.  

Derivatives: This option denotes the    
difference used to estimate partial derivatives 
of the objective and constraint functions in the 
models. 

Forward: The previous iteration is used in 
conjunction with the current point by this  
option. It saves the recalculation time for finite 
differencing, which can account for up to half 
of the total solution time. 

Central: Central difference depends only on 
the present point and disturbs the decision 
variables in opposite directions from that point. 
Although this engrosses more recalculation 
time, it may provide better result to choose a 
direction when the derivatives are rapidly 
changing, and hence fewer total iterations.  

Search: It specifies the algorithm used for 
each iteration to find the direction to search.  

Newton: The default choice is Newton that 
requires more memory but less iteration than 
does the Conjugate gradient method.  

Conjugate: It requires less memory than the 
Newton method but typically needs more  



232           M. A. Hossain et al. / Journal of Water Sustainability 4 (2013) 223-237 

iteration to reach a particular level of accuracy.  

Load Model: It allows loading a previously 
saved fitted routine with newly data.  

Save Model: This option allows the user to 
save the preferable fitting routine for future 
use. 

 

3.  RESULTS AND VALIDATION OF 
THE MODELS 

The spreadsheet based models were executed 
with the experimental data of copper(II), 
lead(II) and cadmium(II) adsorption on garden 
grass. The parameters of Isotherm and kinetics 
model from the predictions were compared 
with linear analysis and MATLAB modelling 
(procedure details is not provided in this paper) 
parameters.   

3.1  Verification of models data 

Some conventional programmes and model-
ling are designed based on the standard error of 
the parameters for non-linear regression, but 
these values are not always considered valua-
ble (Motulsky and Ransnas, 1987). As these 
errors are neither additive nor symmetrical, 
and exact confidence limits cannot be esti-
mated by non-linear functions (Motulsky and 
Ransnas, 1987). This Excel based program is 
designed with the built-in functions and the 
coefficient of determination (R2) is used   
instead of standard error of the parameters for 
non-linear regression. It is assumed that an 
appropriate function is used to describe the 
experimental data and it is informed that how 
accurately the function describes or fits the 
data. The R2 value is named as the coefficient 
of determination and its value represents the 
fraction of the overall variance of the ‘pre-
dicted model’ data that is explained by the 
‘experimental data’. It is calculated from the 
sum of the squares of the residuals captured the 
error between the model prediction and the 

experimental data. The goodness of fit of the 
model prediction to the experimental data were 
evaluated by R2 and RMSE and χ2 for  
Langmuir model; and NSD and ARE for 
Pseudo-2nd-Order model (Hossain et al., 
2012a; Wang et al., 2004). The R2 values also 
calculated from linear regression and 
MATLAB analysis to judge of the best fit and 
compared. Normally the sum of the squares of 
regression computes how far the predicted 
values differ from the overall mean of actual 
values, and is equivalent to the sum of the 
squares, the denominator of Equation (4) for 
Isotherm and Equation (7) for Kinetics model. 
After using ‘Solver’ analysis, the united values 
of the parameters for Langmuir isotherm and 
Kinetics model with linear and MATLAB 
analyses are presented in Tables 1 and 2. 

The model analysis process and after analy-
sis with ‘Solver’ are shown in Figures 1 and 4 
respectively. The model fitting statistics of the 
Langmuir and Kinetics model from Excel 
Spreadsheet, Linear and MATLAB program 
were used to explain ‘predicted maximum or 
equilibrium adsorption’ with ‘experimental 
adsorption’ relationships (Table 1). According 
to the R2 values (Table 1), the experimental 
data for copper(II), lead(II) and cadmium(II) 
adsorption on garden grass were highly fitted 
with Langmuir isotherm prediction. It is   
apparent that the linear analysis showed low 
fitness with experimental data as R2 values of 
0.382, 0.700 and 0.142 for copper(II), lead(II) 
and cadmium(II) adsorption on garden grass 
respectively. Conversely, the Excel Spread-
sheet and MATLAB program analysis  
demonstrated high R2 with prediction for  
experimental data for copper(II), lead(II) and 
cadmium(II) adsorption on garden grass as the 
values were 0.995 and 0.997 for copper(II), 
0.996 and 1.00 for lead(II) and 0.996 and 0.999 
for cadmium. It is revealed that both analyses 
systems predicted similar data which were 
close to the experimental data. Furthermore, 
the Excel Spreadsheet and MATLAB program 
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analysis indicated similar prediction for   
experimental data for copper(II), lead(II) and 
cadmium(II) adsorption on garden grass. These 
two analyses systems predicted the parameters 
for Langmuir isotherm such as qm that were 
similar for the three metals adsorption. The 
predicted values of qm from Excel Spreadsheet 
and MATLAB program analyses were 59.336 
and 59.899 mg/g for copper(II), 63.663 and 
63.509 mg/g for lead(II), and 42.310 and 
41.560 mg/g for cadmium(II) adsorption. On 
the other hand, linear analysis predicted much 
lower values for qm for three metals adsorp-
tion. The model constants KL were predicted 
at similar values by the two analyses system 
but different values found by linear analysis 
(Table 1). A plot of predicted data (Langmuir, 
qe) versus experimental data (Exp. qe) for 
copper(II) adsorption onto garden grass by 
excel model is shown in Figure 4. As can be 
seen in Figure 4, Excel spreadsheet model has 
similar fit to measured values/experimental 
data of copper(II) adsorption to MATLAB 
analysis (R2 = 0.995 compared to R2 = 0.997) 
(Table 1). Similar R2 values for lead(II) and 
cadmium(II) adsorption were predicted by 
both excel spreadsheet and MATLAB analysis. 
The error functions RMSE and χ2 were also 
calculated and tabulated in Table 1. Surpris-
ingly both errors were predicted or estimated 
at similar values by excel and MATLAB 
analysis. The results showed that overall  
performance of excel model was clearly 
equivalent to technically advanced MATLAB 
as shown in Table 1. 

The kinetics data for copper(II), lead(II) and 
cadmium(II) adsorption onto garden grass 
were also analysed by MS Excel Solver  
function - spreadsheet, linear and MATLAB 
analysis. The MS Excel Solver function - 
spreadsheet process is shown in Figure 2. The 
analysed data are shown in Figure 5 and   
tabulated in Table 2. It is noticeable that the 
predictions of equilibrium adsorption, qe,  
kinetics constant, K2 and coefficient of deter-

mination, R2 values by excel spreadsheet,  
linear and MATLAB analysis were similar 
(Table 2), which implies that all analysis were 
properly fitted with experimental data. The R2 
values for excel model, linear and MATLAB 
analysis were 0.995, 0.995 and 0.998 for  
copper(II), 0.997, 0.998 and 0.998 for lead(II), 
and 0.996, 0.999 and 0.998 for cadmium(II) 
adsorption onto garden grass. 

Linear analysis was found to be equal    
validity to the experimental with excel model 
and MATLAB analysis. However, K2 values 
by linear analysis were different with the  
prediction of other two models while K2, by 
excel spreadsheet and MATLAB analyses were 
similar and almost equal to the experimental 
data (Table 2). From the above discussion, 
excel spreadsheet method can be reliable and 
useful for kinetics analysis. 

3.2  Statistical significance of excel  
modelling 

Normally, non-linear regression programs  
estimate of the standard error of (the) param-
eters. These values sometimes mislead the 
predictions and in non-linear functions,    
additive nor symmetrical errors, and exact 
confidence intervals cannot be computed 
(Bowen and Jerman, 1995; Motulsky and 
Ransnas, 1987). The stated standard errors are 
based on linearising assumptions and will  
always underestimate the true uncertainty of 
any non-linear equation and not proper to use 
the standard error values in further formal  
statistical calculations (Brown, 2001; Speers et 
al., 2003). Asymptotic standard errors of the 
parameters have been calculated, but a com-
plex and time consuming computer program is 
needed to evaluate the Hessian matrix (Brown, 
2001; Hong et al., 2008). Thus, an approach is 
adopted in this paper to estimate the standard 
error of the data around the prediction curve 
and is calculated by dividing the sum of the 
squares of the residuals by the degrees of 
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freedom to get the variance of experimental 
data. The square root of this value produces the 
standard error of the residuals and is used to 
calculate the confidence interval. This confi-
dence interval is a sign of the probability that 
the true value/experimental data lie within the 
range specified by the probability formula 
(Brown, 2001). It commonly uses 95% confi-
dence interval, which means there is a 95% 
probability that the experimental value lies 
within the interval. To calculate the confidence 
interval the Critical t-value must be calculated 
and it depends on the confidence interval and 
the degrees of freedom (Brown, 2001; Tramšek 
and Goršek, 2008). Excel has a built-in   

function (tinv) which allows calculation of the 
Critical t-value, thus bypassing the need to 
look up tables of t values. The formula in cell 
H7 (Figures 1 and 2) calculates this value for 
the desired confidence interval and degrees of 
freedom (Abu-Lail et al., 2012; Hong et al., 
2008). Once this value has been calculated, the 
confidence interval is simply the best fit at all 
data points. It is found that the MS Excel 
Solver function - spreadsheet method fulfilled 
all the statistical measures to predict the real 
variance of probability of experimental data for 
both isotherm and kinetics adsorption of  
metals. 

 
Table 1  Comparison of equilibrium’s modelling parameters from MS Excel Solver function - 

spreadsheet method with the analysed parameters from Linear and MATLAB analyses 
for Langmuir isotherm 

Name of metals 
adsorption onto 
grass 

Parameters from Excel 
modelling for Langmuir 
isotherm model 

Parameters from  
Linear analysis for 
Langmuir isotherm 
model 

Parameters from 
MATLAB analysis for 
Langmuir model 

Copper(II) qm.Exp = 50.89 mg/g 

qm.Model = 59.336 mg/g 

KL = 0.019  

R2 = 0.995 

RMSE = 1.407 

χ2 = 0.854 

qm.Exp = 50.89 mg/g 

qm.Model = 9.597 mg/g 

KL = 0.019 

R2 = 0.382 

- 

- 

qm.Exp = 50.89 mg/g 

qm.Model = 59.899 mg/g 

KL = 0.0188 

R2 = 0.997 

RMSE = 1.426 

χ2 = 0.768 
 

Lead(II) qm.Exp = 56.302 mg/g 

qm.Model = 63.663 mg/g 

KL = 0.027 

R2 = 0.999 

RMSE = 0.833 

χ2 = 13.607 

qm.Exp = 56.302 mg/g 

qm.Model = 5.659 mg/g 

KL = 2.539 

R2 = 0.700 

- 

- 

qm.Exp = 56.302 mg/g 

qm.Model =63.509 mg/g 

KL = 0.0198 

R2 =1.00 

RMSE = 0.789 

χ2 = 12.908 
 

Cadmium(II) qm.Exp = 37.64 mg/g 

qm.Model = 42.310 mg/g 

KL = 0.020 

R2 = 0.996 

RMSE = 1.475 

χ2 = 1.029 

qm.Exp = 37.64 mg/g 

qm.Model = 1.199 mg/g 

KL = 0.167 

R2 = 0.142 

- 

- 

qm.Exp = 37.64 mg/g 

qm.Model = 41.560 mg/g 

KL = 0.0199 

R2 = 0.999 

RMSE = 1.365 

χ2 = 1.015 
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Table 2  Comparison of kinetic’s modelling parameters from MS Excel Solver function - 
spreadsheet method with the analysed parameters from Linear and MATLAB analyses 
for Pseudo-2nd-Order model 

Name of  
metals  
adsorption 
onto grass 

Parameters from Excel 
modelling for Pseu-
do-2nd-Order model 

Parameters from  
Linear analysis for 
Pseudo-2nd-Order  
model 

Parameters from 
MATLAB analysis for 
Pseudo-2nd-Order  
model 

Copper(II) qe.exp = 134.96 mg/g 

qe.model =142.540 mg/g 

K2 = 0.000194 

R2 = 0.995 

NSD = 109.810 

ARE = -32.034 

qe.exp = 134.96 mg/g 

qe.model = 140.845 mg/g 

K2 = 0.00016 

R2 = 0.995 

- 

- 

qe.exp =134.96 mg/g 

qe.model = 142.550 mg/g 

K2 = 0.000123 

R2 = 0.998 

NSD = 98.055 

ARE = -31.056 
 

Lead(II) qe.exp = 4.8036 mg/g 

qe.model = 4.851 mg/g 

K2 = 0.286 

R2 = 0.997 

NSD = 2.112 

ARE = -0.052 

qe.exp = 4.8036 mg/g 

qe.model = 4.733 mg/g 

K2 = 2.706 

R2 = 0.998 

- 

- 

qe.exp = 4.8036 mg/g 

qe.model = 4.863 mg/g 

K2 = 0.289 

R2 = 0.998 

NSD = 2.567 

ARE = -0.053 
 

Cadmium(II) qe.exp = 2.900 mg/g 

qe.model = 2.962 mg/g 

K2 = 1.089 

R2 = 0.996 

NSD = 2.547 

ARE = -0.068 

qe.exp = 2.900 mg/g 

qe.model = 2.921 mg/g 

K2 = 4.825 

R2 = 0.999 

- 

- 

qe.exp = 2.900 mg/g 

qe.model = 2.986 mg/g 

K2 = 1.289 

R2 = 0.998 

NSD = 2.897 

ARE = -0.078 

 

3.3  Advantages and limitations 

The above discussion indicated that although 
this analysis protocol could be seen as robust 
and reliable method for isotherm and kinetics 
adsorption modelling as compared to other 
programs, a few points should be taken in mind 
before formulating the models. Firstly, the 
SOLVER will take longer time while the 
number of parameters in the function is larger. 
Furthermore, the more constraints or increas-
ing tolerance or precision in the function, the 
longer SOLVER will take. Secondly, sensible 
initial parameters are important and an     
inappropriate parameter can lead the iteration 

process in the wrong direction and thus wrong 
solution.  

 

4.  CONCLUSION 

Isotherm and kinetics adsorption of metals are 
important models to predict and explicit the 
inert characters of biosorbents for researchers. 
In this context, non-linear modelling is a 
powerful technique for standardizing the   
experimental data. The invention of computers 
has made the modelling of data easier, quick 
and reliable for the users. This paper described 
the method suitable for users with basic 
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knowledge of excel and do not require a vast 
understanding of the mathematics behind the 
processes involved in this modelling. It is  
important, however, is that the users under-
stand enough about the data to be fit to use the 
correct type of analysis, and to judge goodness 
of fit from calculated estimates. Most of the 
researchers might have this knowledge to  
execute the program and feel freed from using 
technically advanced and expensive computer 
software like MATLAB. This MS Excel Solver 
function-spreadsheet method showed robust-
ness of well-fitting with experimental data 
which has a high degree of fitness (high R2 
values). The predicted values of parameters for 
isotherm and kinetics are comparable with the 
analysis by advanced MATLAB programme. 
Thus, it is reasonably helpful and user friendly 
for researchers who are not advanced in  
computer programming. 
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